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SUMMARY

A new method for wetting and drying in two-dimensional shallow water �ow models is proposed. The
method is closely related to the arti�cial porosity method used by di�erent authors in Boussinesq-type
models, but is further extended for use in a semi-implicit (ADI-type) time integration scheme. The
method is implemented in the simulation model WAQUA using general boundary �tted coordinates and
is applied to realistic schematization for a portion of the river Meuse in the Netherlands.
A large advantage of the arti�cial porosity method over traditionally used methods on the basis of

‘screens’ is a strongly reduced sensitivity of model results. Instead of blocking all water transport in
grid points where the water level becomes small, as in screen-based methods, the �ow is gradually
closed o�. Small changes in parameters such as the initial conditions or bottom topography therefore
no longer lead to large changes in the model results. Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: shallow water equations; wetting and drying; arti�cial porosity method; sensitivity of
model results

1. INTRODUCTION

Shallow water �ow problems cover a wide range of practical problems, varying from the scale
of oceans (storm surge prediction) to river sections or lakes. In various occasions the correct
representation of wetting and drying is an important aspect. Of course this holds for dam
and dike break problems and the corresponding �ooding of initially dry land [1]. But wetting
and drying are also relevant for simulation of rivers and coastal areas. They determine the
retention surface through the wetting state of outer marches and banks, which consequently
a�ect the propagation speed of �ood waves and tidal waves. Various examples are given in
References [2–4].
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Figure 1. Illustration of screen-based wetting and drying methods for a part of the Meuse river in case
of a �ood wave due to heavy rainfall. Thick lines: weirs, model elements used to represent local strong

bottom variations. Dashed lines: temporary screens placed to avoid �ow at dry grid points.

Many numerical models for free surface shallow water �ow in rivers, estuaries and coastal
areas are based on staggered grids [2, 5–7]. In these methods drying and wetting are usually
accounted for by placing ‘thin dams’ or ‘screens’ in velocity points of the grid when the
water depth drops below a certain drying threshold, and removing the screens when the water
depth rises again above a �ooding threshold. When a screen is placed, the �ow velocity is
set to zero and the point is taken out of the computation. The di�erent wetting and drying
methods mainly di�er in the criterions that are used for determining when a point becomes
dry or is wetted again, see Reference [8] for an overview.
Screen-based approaches to wetting and drying have been thoroughly studied (Figure 1),

and improvements have been made through the years [2, 9, 10]. However, a number of disad-
vantages still remain:

1. Because the grid points are excluded or included in the domain so abruptly, the drying
and �ooding processes cause extreme sensitivity to round-o� errors. This sensitivity is
illustrated by Figure 8, where round-o� errors locally introduce di�erences in predicted
water levels exceeding 25 cm.

2. Flooding takes place at a maximum speed of one grid point per time step. Inaccuracies
occur when the actual �ooding speed is greater.

3. In semi-implicit time integration schemes, the drying procedure must be intertwined with
the iterative solution process for the water levels at a new time level. This complicates
the analysis of the numerical method that is used.

An alternative approach to �ooding and drying is proposed in References [11, 12] for
Boussinesq-type models. It uses the notion of arti�cial porosity to allow a more gradual
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transition between dry and wet grid points. The arti�cial porosity concept has been adapted
for the use in the shallow water model WAQUA of the Dutch Rijkswaterstaat. The necessary
adjustments mainly involved the incorporation of the method in the alternate direction implicit
(ADI) time integrator and the solvers employed. The method is applied to several schematic
test cases, and one real-life problem for an actual river section on a curvilinear grid. The
simulation results obtained with the new approach are encouraging.
The remainder of this article is organized as follows. Section 2 discusses the idea of arti�cial

porosity in terms of di�erential equations. Section 3 discusses the aspects of the discretization
of the equations, as well as the solution procedure of the discrete equations. Section 4 shows
our test results. Finally, some conclusions are drawn in Section 5.

2. SHALLOW WATER MODEL WITH ARTIFICIAL POROSITY

This section discusses the idea of arti�cial porosity in terms of di�erential equations. We
present a simpli�ed form of the shallow water equations (SWE), and introduce the traditional
screen-based approach. Next the way in which the original SWE are modi�ed is described
so that the computational domain no longer varies with time. Some analyses of the modi�ed
(arti�cially porous) SWE are given: concerning the conservation of momentum and energy,
and concerning a phenomenon which can be called trickle �ow. This phenomenon only occurs
in the arti�cially porous equations and not in the original SWE.

2.1. Shallow water equations

The two-dimensional depth-averaged shallow water �ow equations are given by the conti-
nuity equation (1a) and the momentum equations in u- and v-directions (1b), (1c), see e.g.
Reference [13].
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Here the following symbols are used:

� water level, relative to a reference plane z=0
d bottom depth below the reference plane (positive downwards)
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Figure 2. Illustration of the meaning of symbols � (water level), H (�ow-through height) and d
(bottom level), and the reference plane z=0.

H �ow-through height, usually called water height above bottom level
u; v components of the depth-averaged �ow velocity
g gravitational acceleration
C Ch�ezy-coe�cient for bottom friction [14]

Some of the symbols are illustrated in Figure 2. All symbols are listed in the
Nomenclature.
A number of phenomena that are not essential to the problem of wetting and drying have

been omitted, e.g. the Coriolis force and in�uences of wind and turbulence.
Equations (1) are applied only in the wet part of the domain of interest. In the dry part,

the �ow velocity and the water level are meaningless, and any equation may be prescribed
here, e.g. u= v=0 and �=−d. Due to rising and falling of the water level �, the domain
of the equations varies in time. The problem to be solved is therefore a moving boundary
problem.
The boundary equations to be applied at the boundary between the dry and wet parts of the

domain remain a subject for research [13]. This paper is not concerned with this issue. The
only goal is to �nd reliable solutions for the standard case, in which the boundary condition
is �=−d.

2.2. Traditional approaches for wetting and drying: using screens

In literature a vast amount of strategies can be found for simulation problems with mov-
ing boundaries, e.g. tracking where the front=boundary of the domain is on a �xed grid
(surface markers), tracking �uid using markers (marker-and-cell method), tracking the �uid
using an indicator function (volume-of-�uid and level-set methods), using moving coordinates
(Lagrangian approach), stretching the grid near the interface, etc. An overview and references
to many methods are presented in Reference [15].
The primary approach that is followed in shallow water simulation appears to be by marking

grid cells or cell-faces as wet or dry on a �xed grid. For instance Balzano [8] discusses 10
varieties of this approach as presented by various authors in the �eld. We call these methods
‘screen-based methods’ because they can all be implemented using screens or thin dams at
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appropriate locations, i.e. the velocity points of the grid, that obstruct the �ow to=from grid
cells that are considered dry.
Crucial aspects in screen-based methods are as follows:

• How the bottom topography in water level and velocity points are speci�ed, e.g. the
values in velocity points may be speci�ed by the user, the values in water level points
derived from this by various criteria (min, mean, max) [4].

• How the interpolation of water levels to velocity points is de�ned. The water level at the
velocity point between water level points m and m + 1 may for instance be calculated
using arithmetic averaging (�m+1=2 = (�m + �m+1)=2), but also using an upwind approach
or using other criteria.

• Which criteria are used for declaring cells or cell-faces wet or dry, e.g. checking against
a �ooding threshold �, drying threshold �=2 (using a hysteresis to prevent �ip-�op be-
haviour), or using tolerance 0 in other cases.

• At which positions in the solution algorithm the various checks are performed. For
instance drying and �ooding can be checked before starting the solution procedure for
water levels at a new time step, within the solution procedure only drying is allowed to
prevent in�nite loops.

Even after long times of tuning and extension of these ideas, we still notice a number of
problems that are inherent to the screen-based approach:

• The wetting strategy only removes screens at grid points adjacent to wet area. Therefore
�ooding never happens faster than one grid size per time step. This poses a time step
restriction which cannot always be satis�ed.

• The dry area never completely dries up. Typical values for the drying threshold are
1–15 cm, the latter of which implies a considerable amount of water being retained. In
some cases even more water remains in ‘dry’ areas. For instance when removing a screen
would lead to an unacceptably large �ow within one time step, which would result in
negative water heights.

• The wetting and drying procedure largely complicates the solution procedure for the
shallow water problem. The various choices for the elements of screen-based meth-
ods presented above are strongly interrelated. This complexity makes it hard to analyse
the properties of the overall numerical solution method (accuracy, stability, etc.). Fur-
ther it is di�cult to achieve the correct wetting and drying behaviour in all kinds of
situations.

• The change of regimes between wet and dry is abrupt and is limited to the times cor-
responding to integer time steps. These sudden changes may introduce non-physical re-
�ections, and also increase the sensitivity of the model results.

The sensitivity of model results was one of our main motivations for pursuing enhanced
wetting and drying methods. The sensitivity problem can be formulated as follows:

‘Even the smallest change anywhere in the model (geometry, coe�cients, initial
conditions, round-o� errors) may introduce signi�cant changes to the simulation
results at later times at various locations in the model’.

An infamous cause of sensitivities are switches in the model, where a certain calculation is
only carried out if � is larger than a certain value. This is particularly so for the screen-based
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approaches: �ow is possible when H¿�, but is obstructed for H6�. The solution of the
equations depends on the intermediate quantity H in a discontinuous way.
Sensitivities complicate the comparison of scenarios. Users of the simulation model often

want to subtract two scenarios from each other to determine the e�ect of a modi�cation in the
model. However, the di�erences are often locally much larger than expected, due to sensitivity
of the model. For instance when a screen at one location is placed one time step later in the
�rst model run than in the latter one. Also more or less water may trapped in a grid cell by
the surrounding screens in di�erent model runs.
The sensitivity of model results further hampers performing regression tests. When the pro-

gram is modi�ed, the compiler may decide to rearrange computations. Simulations that should
not be a�ected by the extensions can then still produce di�erent results. The programmer then
has to verify each time that the di�erences are ‘normal’ instead of due to programming faults.
Finally the sensitivity of model results is disadvantageous for the application of Kalman

�ltering. A Kalman �lter has been implemented for the WAQUA model of Rijkswaterstaat
and is able to signi�cantly improve the storm surge prediction along the Dutch coast, e.g.
reduce the RMS-error from 20 to 12 cm [16]. Because the SWE are slightly nonlinear, so-
called ‘error modes’ (disturbances of the model state) are propagated using a linearization step
that involves subtracting two scenarios. This is of course complicated when the sensitivity of
a model is large.
In the following section, a �xed grid approach is introduced that does not require a strict

di�erentiation between wet and dry cells, and so avoids the problems mentioned.

2.3. The new approach using arti�cial porosity

In numerical approximation, special precautions are taken to avoid that the water level �
becomes lower than the bottom level −d, which would result in negative water volume at the
given grid point.
One key element of the arti�cial porosity method is the introduction of the pseudo-water

level  . The pseudo-water level is allowed to freely drop below the bottom as illustrated in
Figure 3. It replaces the true water level � in most places in the equations. For instance it is
used to approximate the water level gradient at the moving boundary.
The second key element of the arti�cial porosity method is to use a more gradual transition

between ‘wet’ and ‘dry’ regimes. This is achieved through the de�nition of the �ow-through
height H , which is now de�ned by some function H =H�( + d), depending on the thresh-
old value �. Di�erent positive functions may be used. Kennedy et al. [11] and Madsen
et al. [12] choose a function that is only de�ned if the pseudo-water level is high enough,
i.e.  + d¿− D for some value D. For the purpose of robustness, we have used a function
that is de�ned for all  + d as shown in Equation (2).

H =H�( + d)=

{
 + d if  + d¿�

�2=(2� − ( + d)) if  + d¡�
(2)

This function has been chosen such that the �ow-through height is equal to the original
one when  +d¿�, and that the �ow-through height tends to zero for negative  +d. Since
the �ow-through height is never zero or below, the computational area of the problem never
changes: the arti�cially porous problem lives on the entire grid.
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Figure 3. The arti�cial porosity approach. There are two water level �elds: the pseudo-water level  
and the true water level �=H − d.

Finally, the ‘true’ water level � that is computed by the program is de�ned such that it
easily displays the volume of water in grid cells:

�=−d+H�( + d) (3)

The modi�ed SWE read:

@�
@t
+

@Hu
@x

+
@Hv
@y

= 0 (4a)

@u
@t
+ u

@u
@x
+ v

@u
@y
+ g

@ 
@x
+ �u = 0 (4b)

@v
@t
+ u

@v
@x
+ v

@v
@y
+ g

@ 
@y
+ �v = 0 (4c)

For very small values of the threshold �, the equations in the wet part of the domain are
exactly the original SWE. In the dry part of the domain, the equations u= v=H =0 are no
longer used. Instead, equations are used which are very similar to the original momentum and
continuity equations. Some of the problems associated with the traditional ‘screen’ methods
are avoided by the arti�cial porosity approach:

• The drying=wetting strategy is considerably simpli�ed.
• Since drying=wetting is a much more gradual process, the sensitivity of the solutions is
greatly reduced.

• Flooding may occur at greater speed than one grid size per time step.

2.4. Conservation properties

The momentum and continuity equations may be combined to derive the conservation laws for
mass, momentum and energy. These conservation laws explain the local variations of mass,
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momentum and energy in terms of �uxes and sources=sinks:

• mass is only subject to a transport term, called discharge;
• momentum is subject to three transport terms: advection, viscosity and (hydrostatic)
pressure. Momentum source=sink terms come from friction, wind and the momentum
exchange between the earth and the water at the bottom;

• energy is subject to two transport terms: advection and viscosity. Energy source=sink
terms are wind, viscosity and friction.

Arti�cial porosity does not fundamentally change the conservation laws. Two terms, how-
ever, change when arti�cial porosity is included in the equations:

• Momentum transport due to the pressure-gradient changes. This term is equal to
∇( 12g(�+ d)2) in the original equations, but changes to

∇
(
1
2
g( + d)2 − g

∫ �

 +d
(H�(z)− z) dz

)
(5)

in the arti�cially porous model.
The original and arti�cially porous pressures are equal when the water height is more
than the threshold �. When the water height is below the threshold value, the arti�cially
porous pressure is less than the original pressure. The porous approach can therefore also
be understood as the introduction of a suction force where the water height is small.

• The expression for the potential energy changes. In the original equations, the po-
tential energy is Hep = (g=2)(�2 − d2). In the arti�cially porous model, it changes to
Hep = g

∫  zH ′
�(z + d) dz.

The original and arti�cially porous potential energies are equal when the water height
is more than the threshold �. When the water height is below the threshold value, the
arti�cially porous potential energy is more than the original potential energy.

Besides the two di�erences mentioned above, there is another di�erence: mass, momentum
and energy can be transported across dry land in the arti�cially porous equations, which they
cannot in the original equations. The amount of transport into and across the dry parts of
the domain may be limited by the choice of the threshold �, as is discussed in the following
section.

2.5. Trickle �ow

There is a qualitative di�erence between the solutions obtained with the arti�cial porosity
approach and those obtained without it. It is illustrated in Figure 4: obstacles in the bottom
pro�le no longer completely keep the water from �owing through. When a simulation is
carried out long enough, any amount of water may therefore have passed through the obstacle
in the computational domain.
In this section, it will be discussed how much water may pass through an obstacle, o�ering

some insight in the e�ects of parameter settings (such as the choice of the threshold value �).
In the dry part of the domain where  +d¡0, the momentum equation will be dominated by

the friction force, which will be in balance with the gravitational force. In the one-dimensional
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Figure 4. When arti�cial porosity is used to model drying and �ooding, the water may �ow (trickle)
through obstacles, since the water height is never zero. After a long period of time, the water level at

the left of the obstacle may therefore become equal to that at its right.

case this gives

g
@ 
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+

gu|u|
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=0 (6)

This equation can be integrated. The discharge Hu will be constant.
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=CH 3=2
√
� =L (7)

for a value of C and H found in the interval L. The value of the Ch�ezy parameter C often
depends on the water height H . For instance the Manning formula [14] can be used which is
given by

C=H 1=6=� (8)

where � denotes Manning’s coe�cient. In this case the discharge Hu in (7) is given by
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Approximation (9) for the discharge shows the factors on which the strength of the ‘trickle
�ow’ depends:

1. The threshold value �: if the threshold is 23% smaller, it lets half as much water trickle
through.

2. The distance between the pseudo-water level and the bottom (i.e. the height of the
obstacle): an obstacle that is 33% times taller lets half as much water trickle through.

3. The di�erence in water level at both ends of the obstacle: a water level di�erence that
is four times larger lets twice as much water trickle through.

4. The width of the obstacle: an obstacle that is four times as wide lets half as much water
trickle through.

Tests to quantify the trickle e�ect are described in Section 4.2. One typical result is that it
leads to a discharge of Hu=0:02 m2=s for a water level di�erence � =5 m and threshold
value �=0:1.

3. DISCRETIZATION AND SOLUTION PROCEDURE OF THE SHALLOW
WATER EQUATIONS

This section �rst discusses the aspects of the space and time discretization of the SWE, as
used in the WAQUA package. A form of alternate direction implicit time integration (ADI) is
used. Then the methods used for the solution of the discrete equations are described. Special
attention is paid to the adjustments that were necessary for incorporating arti�cial porosity.

3.1. Space discretization of the shallow water equations

The WAQUA package uses an orthogonal curvilinear grid as illustrated in Figure 1. As can
be seen, the curvilinear grid is designed to �t the geometry, choosing smaller mesh sizes in
the locations where the solution �uctuates strongly. The orthogonality of the grid is used to
avoid over-complicating the momentum equations in the curvilinear coordinates.
A staggered grid convention is used [13], in which the water levels and velocity vector

components are approximated in di�erent locations. The staggered grid avoids de-coupling
of the solutions, which may cause non-physical wiggles in non-staggered grids. The type of
grid used is the Arakawa C-grid where water levels are approximated in cell centres denoted
by (i; j), u-velocities at vertical cell-faces (i + 1=2; j) and v-velocities at horizontal cell-faces
(i; j + 1=2). The components of the �ow velocity vector in terms of which the equations are
stated are grid aligned, which means that they point in the grid directions. Since the grid is
curvilinear, these directions vary throughout the grid.
Higher order upwind discretizations are combined with central discretization formulas for

the advection terms in the momentum equation. The result is a discretization that produces very
little wiggles and has very little arti�cial viscosity at the same time [7]. The discretizations
used are mass conserving. Mass is conserved by de�ning the mass transport �uxes (discharges)
Hu in the intermediate grid points (i + 1=2; j) and the discharges Hv in the grid points
(i; j + 1=2), and using these in the mass balance

�xij�yij
@�i; j
@t

= {�yHu}i+(1=2); j − {�yHu}i−(1=2); j + {�xHv}i; j+(1=2) − {�xHv}i; j−(1=2) (10)
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3.2. Time integration of shallow water equations using ADI

Much of the work in the implementation of the arti�cial porosity method for the modelling of
drying and �ooding, was the integration of the porosity equations into the ADI-time integration
scheme used by the WAQUA code [7].
The ADI-scheme calculates the water levels and �ow velocities at the time level t+1 from

those at the time level t in four steps. The main structure of the calculation is discussed below.
The introduction of the arti�cial porosity approximation of the water height is discussed in
Section 3.4.

• First half time step:
◦ Momentum equation in v-direction
The �rst step in the computation involves the solution of the momentum equation in
the v-direction for a half time step. The only variable that changes is the v-velocity:
the u-velocity and the water levels remain unchanged.
The variable v is used mostly at the new time level t + 1

2 for the terms in the
momentum equation. A frozen coe�cient approach is used to make the system linear.
The resulting momentum equation is:

vt+(1=2)

�t=2
+ vt

@vt+(1=2)
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+ ut @v

t+(1=2)
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+ �tvt+(1=2) =

vt

�t=2
− g

@ t

@y
(11)

The equation is a linear system. A line Gauss–Seidel iteration method is used for
the solution of the system. No major adjustments have been made to the original
WAQUA code.

◦ Coupled continuity and momentum equations
The second step in the computation is a coupled system of the continuity equation
and the momentum equation in the u-direction. The water levels are taken at the new
time level t+ 1

2 . The u-velocity is taken at the new time level in a small number of
terms. The result is a number of independent systems of equations, in which there
is only a coupling of the unknowns in the x-direction. The system is linear in the
u-velocities, and nonlinear in the water levels. The solution is found by successive
linearization (using frozen coe�cients) and direct solution of the resulting tridiagonal
linear systems.
The system is given by
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• Second half time step:
◦ Momentum equation in u-direction
The third step in the computation is the solution of the momentum equation in the
u-direction for the second half of the time step. This step is very similar to the �rst
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step in the calculation.
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◦ Coupled continuity and momentum equations
The last step in the computation is a coupled system like the second step.
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Since all the terms appear as an implicit term in one of the time step halves, and as an
explicit term in the other, the resulting time integration method is second order accurate and
(theoretically) unconditionally stable.

3.3. Solution method of the original WAQUA code

The momentum equations (11) and (14) are linear systems and can be solved using
Gauss–Seidel iteration.
The coupled equations (12), (13) and (15), (16) are nonlinear. The momentum equations

(13) and (16) are linear, but the continuity equations (12) and (15) are quadratic. Successive
Picard linearization is used for solving these systems.
In the original WAQUA code, the water height H is checked before the iterative solution

procedure starts. Screens are removed at velocity points where su�cient water is found.
Next, the water height H is also checked at every iteration. Velocity grid points where

the water height is negative are taken out of the simulation domain by setting the velocity
to zero. If a negative water height is found at a water level grid point, all the velocity grid
points around the given water level grid point are taken out of the computational domain.
Screens are only removed before the solution procedure and only added during the iterations,

which ensures that a solution will be found.

3.4. Solution of the arti�cially porous system

The introduction of the arti�cial porosity approximation for the water height introduces no
changes in the parts of the code that solve the momentum equations only (steps 1 and 3).
The introduction of arti�cial porosity somewhat complicates the solution procedure for the

continuity equations (12) and (15) for two di�erent reasons.
The �rst reason is that it must be made sure that systems (12) and (15) really have a

solution. In case of ‘over-draining’ (see Section 3.5), this may not be the case, so some
adjustments need to be made to the system to give it a solution.
The second reason is that in the case of the arti�cially porous equations, systems (12)

and (15) are no longer quadratic, since the function H� (2) is used. A suitable linearization
is to be chosen for the solution procedure of the system.
The structure of the discrete system, of which the semi-discrete formulation is given in

(13), (12) can be clari�ed by lumping all the right hand sides, and omitting all the
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time-subscripts for the new time level t + 1
2 . The system then becomes:

�ij
�t=2

+
Hi+(1=2); jui+(1=2); j�yi+(1=2); j − Hi−(1=2); jui−(1=2); j�yi−(1=2); j

�xij�yij
= RHSij

(
1
�t=2

+ �i+(1=2); j +
@ut

@x

)
ui+(1=2); j + g

 i+1; j −  ij

�xi+(1=2); j
= RHSi+(1=2); j (17)

with the right-hand sides RHSij and RHSij given by

RHSij =
Ht

�t=2
+

@
@y

Htvt

RHSi+(1=2); j =
ut

�t=2
− vt+(1=2)

@ut

@y
(18)

An iterative scheme is used for the solution of system (17). The system is made linear
in every iteration level q by a frozen coe�cient approach for all the terms except the water
height H [q+1] at the new iteration level. For this term the following linearization is used:

H̃ [q+1] =H [q] + ( [q+1] −  [q]) · H ′
�( 

[q] + d) (19)

The linear system that is solved in every iteration is given by

H̃
[q+1]
ij − dij

�t=2
+

H [q]
i+(1=2); ju

[q+1]
i+(1=2); j�yi+(1=2); j − H [q]

i−(1=2); ju
[q+1]
i−(1=2); j�yi−(1=2); j

�xij�yij
=RHSij (20a)

(
1
�t=2

+ �i+(1=2); j +
@ut

@x

)
u[q+1]i+(1=2); j + g

 [q+1]i+1; j −  [q+1]ij

�xi+(1=2); j
=RHSi+(1=2); j (20b)

The linear momentum equation (20b) is substituted into the linearized continuity equation
(20a). The result is a number of independent tridiagonal systems for the pseudo-water
levels  [q+1]. These systems can be solved directly using a double sweep, after which the
next iteration can be done.

3.5. Over-draining

In the ADI-method for time integration presented in Section 3.2, an explicit approximation is
used for the discharges Hv in the �rst half of the time step (12) and for the discharges Hu
in the second half (15).
There is no guarantee that these explicit �uxes do not extract more water from a row

or column of control volumes than is stored in the entire row or column. Such a situation
is called ‘over-draining’ of a grid row or column. When over-draining occurs, system (12)
or (15) has no solution.
To avoid over-draining, the explicit discharges are limited so that they do not extract more

than 90% of the available water volume from any control volume. One needs to proceed with
care when limiting the discharges, because, obviously, any extracting water from a control
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volume supplies water to another control volume. Therefore, limiting the discharge from an
over-drained control volume may cause over-draining in the neighbouring control volume. An
iterative procedure is used to obtain the correct explicit discharges: in every iteration, the
set of over-drained control volumes is extended. The water-extracting discharges are limited
for every over-drained control volume just so much, that exactly 10% of the water remains
(this requires the solution of a tridiagonal linear system for all over-drained control volumes).
The iteration procedure �nishes when an iteration does not cause any new control volumes
to over-drain.
The discharges will only be limited if over-draining is about to occur. In a rectilinear grid,

this happens when

�t¿0:9
H

@Hv=@y
(21)

Note that this is a grid-independent time step limit. Loss of accuracy may occur if the dis-
charges need to be limited.
In the tests presented in Section 4, over-draining hardly ever occurs. The treatment for

over-draining discussed in this section has been tested in other tests, in which the correctness
of the implementation was determined.

3.6. The option ‘quantify randomness’

In the course of this research a new option has been developed for WAQUA to investigate
the sensitivity of a scenario. This new option is called ‘quantify randomness’. It clearly shows
the e�ects that small disturbances and round-o� errors during the simulation may have on the
simulation results.
The option works by implementing two equivalent versions for one key operation in the

solution algorithm. In WAQUA this key step is chosen to be the double sweep algorithm for
solving tridiagonal systems of equations for the new water levels. In the original implemen-
tation these systems are solved by a forward sweep, eliminating the lower diagonal, and a
backward sweep, solving the system by back-substitution. The second implementation consists
of performing a backward sweep, eliminating the upper diagonal, and a forward sweep for
back-substitution.
These two implementations are completely equivalent. There is not one single argument

why one of the algorithms should produce ‘better’ results than the other. In the presence
of round-o� error they however produce di�erent results. These di�erences are introduced in
every time step of the simulation and throughout the model. The di�erences of previous time
steps propagate through the model and may trigger other behaviour of the model, for instance
trigger di�erences in the drying and �ooding procedures.
The procedure to determine the sensitivity of a scenario now consists of running the sim-

ulation with both implementations and comparing the results. Although there is no guarantee
that this di�erence is anywhere near the actual di�erence to the exact solution, the option still
gives a very valuable �rst guess. In practice the pattern and size of the di�erences between
the two runs appears to be well comparable to di�erences obtained through other means:
comparing a sequential to a parallel run, with=without compiler optimizations, etc. Therefore
it helps well in judging the results of regression tests: distinguishing programming faults from
the inherent behaviour of a scenario.
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4. RESULTS

This section shows results that are obtained with the new wetting and drying method. First
schematic test-cases are used to show the e�ects of the arti�cial porosity approach and to
analyse the trickle e�ect that was described in Section 2.5. Then the results are shown for
a realistic model of a part of the Meuse river. The sensitivity of the model results to small
changes (such as round-o� errors) turns out to be greatly reduced by the new wetting and
drying model.

4.1. One-dimensional test-case

The e�ects of arti�cial porosity for a simulation in which drying and �ooding occur is shown
in a simple one-dimensional test. The domain is shown in Figure 5: the bottom is a slope. At
the open boundary at the left, the water level is prescribed as a boundary condition. The water
level drops slowly, so that the water is drained gradually from the domain. After most of
the water has been drained, the water level boundary condition is increased fast. The domain
�oods again.
The simulation results are shown in Figure 6. When using small time steps, the solutions

obtained with screens are almost identical to those obtained with arti�cial porosity. When a
larger time step is used, however, �ooding can only occur at a rate of one grid size per time
step. Arti�cial porosity avoids this problem.

4.2. Magnitude of the trickle e�ect

A second test is used to quantify the trickle e�ect (see Section 2.5). For this a simple canal
is used with a single obstacle of one mesh width in the middle. The canal is 10 000 m long
and is discretized with mesh widths 5 m6�x6500 m.
In a simple test with L=20m and �z=4m (see Figure 4), the mesh size and the threshold

depth were varied. The results are shown in Table I. All values found are negligible.

4.3. Detailed model of the Meuse river

A real-life test case contains a part of the Meuse river in the south of the Netherlands. The
simulation domain is approximately 7km long and 2km wide, and the curvilinear grid consists
of 200× 50 grid points, resulting in a grid size of approximately 40m. The time step used is
15 s. The �ooding threshold � was 1 cm.

Figure 5. The domain in the one-dimensional test (depth-averaged calculation).
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Figure 6. Contours of pseudo-water heights  + d in the one-dimensional test problem. The results are
shown in time-location format (note the axes). Left: the dry land is coloured grey. Apparently, the land
is considered dry when the water height drops below 10 cm. Flooding occurs at a maximum speed of

one grid size per time step. Right: the arti�cial porosity approach avoids this problem.

Table I. Discharge per unit of width (Hu) due to trickle �ow as function of the
parameters of the trickle test.

�=0:2 m �=0:1 m �=0:05 m

�x=20 m 0:021 m2=s 0:006 m2=s 0:0014 m2=s
�x=10 m 0:051 m2=s 0:010 m2=s 0:0025 m2=s
�x=5 m 0:070 m2=s 0:016 m2=s 0:004 m2=s
�x=2:5 m 0:080 m2=s 0:020 m2=s 0:004 m2=s
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Figure 7. Water level di�erence due to round-o�s at one location in the Meuse model (marked by circles
in Figure 8) as a function of time. Di�erences in rounding errors between two otherwise identical runs
lead to signi�cant di�erences in the simulation results. The value that is exceeded in 5% of the times

(95%-quantile) is marked with two horizontal lines.

In a simulation used to assess the risk of �ooding after severe rainfall, the discharge at the
entrance of this part of the Meuse (south in the model) is increased, over a period of 24 h,
from 250 to 3000m3=s. The discharge is then kept constant for 12h, after which it is reduced
to its original level in the course of another 24 h.
Most of the domain is �ooded during the simulation, after which a large part of the do-

main (but not the entire domain) becomes dry again. These results are computed more or
less identically by both the original screens method and the new method based on arti�cial
porosity.
Due to various reasons the simulation results for this model are sensitive to small distur-

bances. This is awkward for users of the model, for instance when comparing two scenarios.
The sensitivities are caused among others by the wetting and drying methods used.
The sensitivity of the model is quanti�ed with the option quantify randomness as explained

in Section 3.6. The di�erences between the simulation results for the two runs are unexpectedly
large, as illustrated in Figure 7. The top-left �gure shows a time-series of the di�erence in
one location for the original simulation method. The di�erence displays a more or less chaotic
behaviour. In order to quantify the magnitude of the noise we select the largest value that
occurs at least 5% of the time. This ‘95%-quantile’ is shown in the �gure by the horizontal
lines. In 5% of the times the absolute value of the di�erence exceeds this line. For the original
simulation method the sensitivity in this point is thus quanti�ed as 4:6 cm.
The top-right graph in Figure 8 shows the results for the same location, but now with the

arti�cial porosity method. In this case the 95%-quantile is found at 7 mm, i.e. the sensitivity
is strongly reduced.
Finally the bottom two graphs display the sensitivity values for the entire simulation domain.

It can easily be seen that the sensitivity is signi�cantly reduced. Where the values are typically
10 cm in the lower part of the domain when the screens method is used, they rarely exceed
1 cm when the arti�cial porosity method is used.
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Figure 8. Sensitivity statistics for the Meuse model. The value that is exceeded 5% of
the time (95%-quantile, [m], illustrated for one location in Figure 7) is calculated at
every grid point. At many locations, this value is 10 cm or more in the screen approach.

It is a lot smaller in the arti�cial porosity approach.

5. CONCLUSIONS

In this paper a new method is presented for the numerical treatment of the moving land–water
boundary in shallow water models. The method consists of a slight extension to the SWE
themselves, i.e. the introduction of the pseudo-water level  that is allowed to drop below
the bottom level. This extension makes that no longer a distinction has to be made between
wet and dry land; the same equations are applied throughout the entire simulation domain.
This eliminates the need for all kinds of ad hoc criteria for determining the �ow status of
grid points that complicate the model and program code.
The simulation results di�er very little from those obtained with traditional screen-based

methods, except that the solutions are much less sensitive to small perturbations such as
round-o� errors. This is achieved by avoiding the abrupt changes from wet to dry of the
traditional methods. Moreover some artifacts are avoided, such as the water that is sometimes
trapped in dry areas of the simulation domain. This together simpli�es the comparison of
scenarios and thus enhances the user-friendliness and applicability of the model.

NOMENCLATURE

� water level (m)
 pseudo-water level (m)
d bottom depth (m)
H water height (m)
L characteristic (horizontal) distance (m)
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� �ooding threshold (m)
u �ow velocity in x-direction (m=s)
v �ow velocity in y-direction (m=s)
g gravitational acceleration (m=s2)
C Ch�ezy parameter (

√
m=s)

� friction parameter (1=s)
ep density of potential energy (J=m3)
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